Explicit Local Class Field Theory à la Lubin and Tate with an Application to Algebraic Topology

Hongxiang Zhao

Contents

- 1 Local Class Field Theory
- 2 Lubin-Tate Formal Group Laws
- 3 Ando's Theorem on Norm-Coherent Coordinates
 - Morava E-Theory
 - Power Operations
 - Ando's Theorem

Quadratic Reciprocity Law

Suppose p,q are two distinct primes. Define the Legendre symbol by

$$\left(\frac{p}{q}\right) = \begin{cases} 1 & p \equiv x^2 \pmod{q} \text{ for some } x \in \mathbb{Z} \\ -1 & \text{otherwise} \end{cases}$$

Suppose further p,q are odd. Let $q^*:=(-1)^{\frac{q-1}{2}}q$. The quadratic reciprocity law tells us

$$\left(\frac{p}{q}\right)\left(\frac{q^*}{p}\right) = 1$$

Quadratic Reciprocity Law in terms of Fields Extension

Consider the following surjective homomorphism, where I(q) is the subgroup of \mathbb{Q}^* generated by primes distinct to q:

$$\phi \colon I(q) \to \{\pm 1\} = \mathsf{Gal} \left(\mathbb{Q}(\sqrt{q^*}) / \mathbb{Q} \right)$$

$$p \mapsto \left(\frac{q^*}{p} \right)$$

Quadratic Reciprocity Law in terms of Fields Extension

Consider the following surjective homomorphism, where I(q) is the subgroup of \mathbb{Q}^* generated by primes distinct to q:

$$\begin{split} \phi \colon I(q) &\to \{\pm 1\} = \mathsf{Gal} \! \left(\mathbb{Q}(\sqrt{q^*})/\mathbb{Q} \right) \\ p &\mapsto \left(\frac{q^*}{p} \right) \end{split}$$

For any $p \in \mathrm{Nm}_{\mathbb{Q}(\sqrt{q^*})/\mathbb{Q}} \big(\mathbb{Q}(\sqrt{q^*})^* \big)$,

$$p = a^2 - b^2 q^*, a, b \in \mathbb{Q} \quad \Rightarrow \quad \left(\frac{p}{q}\right) = 1$$

By quadratic reciprocity, $\ker \phi \supset \operatorname{Nm}(\mathbb{Q}(\sqrt{q^*})^*)$.

One of the Main Theorems of Local Class Field Theory

Theorem (Local Reciprocity Law)

Suppose K is a non-archimedean local field. $\exists ! \ \phi_K \colon K^* \to \operatorname{Gal}(K^{ab}/K)$, s.t.

- (a) $\forall \pi$ uniformizer of K, $\phi_K(\pi)|_{K^{un}}$ is the Frobenius of $\operatorname{Gal}(K^{un}/K)$.
- (b) For any finite abelian extension L of K, there is an exact sequence:

$$1 \rightarrow \textit{Nm}_{L/K}(L^*) \rightarrow K^* \stackrel{\phi_K(\cdot)|_L}{\rightarrow} \textit{Gal}(L/K) \rightarrow 1$$

$$\leadsto \ \phi_{L/K} \colon K^* / \textit{Nm}_{L/K}(L^*) \ \stackrel{\sim}{\rightarrow} \ \textit{Gal}(L/K)$$

The map $\phi_{L/K}$ is then called the **local Artin map**.

Lubin and Tate's Work

Historically, local class field theory was proved via global class field theory by Hasse.

Lubin and Tate's Work

Historically, local class field theory was proved via global class field theory by Hasse.

There is no explicit formula for K^{ab} and ϕ_K .

Lubin and Tate's Work

Historically, local class field theory was proved via global class field theory by Hasse.

There is no explicit formula for K^{ab} and ϕ_K .

In 1965, Lubin and Tate gave an explicit description of K^{ab} and ϕ_K via Lubin-Tate formal group law.

Given the isomorphisms

$$\phi_{L/K} \colon K^*/\mathsf{Nm}(L^*) \to \mathsf{Gal}(L/K) \cong \mathsf{Gal}(K^{ab}/K)/\mathsf{Gal}(K^{ab}/L)$$

for each finite abelian extension L of K.

Passing to the profinite completion, we get an isomorphism:

$$\widehat{\phi}_K \colon \widehat{K^*} \to \operatorname{Gal}(K^{ab}/K)$$

On the other hand, we have a factorization: $\widehat{K^*}\cong \mathcal{O}_K^*\times \pi^{\widehat{\mathbb{Z}}}\cong \mathcal{O}_K^*\times \hat{\mathbb{Z}}$.

$$\widehat{\phi}_K \colon \mathcal{O}_K^* \times \widehat{\mathbb{Z}} \cong \widehat{K^*} \overset{\sim}{\to} \operatorname{Gal}(K^{ab}/K)$$

$$\widehat{\phi}_K \colon \mathcal{O}_K^* \times \widehat{\mathbb{Z}} \cong \widehat{K^*} \overset{\sim}{\to} \operatorname{Gal}(K^{ab}/K)$$

Let
$$K_{\pi} = (K^{ab})^{\hat{\phi}_K(\pi)}$$
 and $K^{un} = (K^{ab})^{\hat{\phi}_K(\mathcal{O}_K^*)}$.

By infinite Galois theory, $\operatorname{Gal}(K^{ab}/K_\pi)=\hat{\mathbb{Z}}$ and $\operatorname{Gal}(K^{ab}/K^{un})=\mathcal{O}_K^*.$

$$\widehat{\phi}_K \colon \mathcal{O}_K^* \times \widehat{\mathbb{Z}} \cong \widehat{K^*} \overset{\sim}{\to} \operatorname{Gal}(K^{ab}/K)$$

Let $K_{\pi} = (K^{ab})^{\hat{\phi}_K(\pi)}$ and $K^{un} = (K^{ab})^{\hat{\phi}_K(\mathcal{O}_K^*)}$.

By infinite Galois theory, $\operatorname{Gal}(K^{ab}/K_\pi) = \hat{\mathbb{Z}}$ and $\operatorname{Gal}(K^{ab}/K^{un}) = \mathcal{O}_K^*.$

It can be shown that K_{π}/K is totally ramified,

and K^{un}/K is the maximal unramified extension in K^{ab} .

$$\widehat{\phi}_K \colon \mathcal{O}_K^* \times \widehat{\mathbb{Z}} \cong \widehat{K^*} \overset{\sim}{\to} \operatorname{Gal}(K^{ab}/K)$$

Let
$$K_{\pi} = (K^{ab})^{\hat{\phi}_K(\pi)}$$
 and $K^{un} = (K^{ab})^{\hat{\phi}_K(\mathcal{O}_K^*)}$.

By infinite Galois theory, $\operatorname{Gal}(K^{ab}/K_\pi) = \hat{\mathbb{Z}}$ and $\operatorname{Gal}(K^{ab}/K^{un}) = \mathcal{O}_K^*.$

It can be shown that K_{π}/K is totally ramified,

and K^{un}/K is the maximal unramified extension in K^{ab} .

$$\Rightarrow$$
 $K^{un}\cap K_\pi=K$ and $\mathsf{Gal}(K_\pi K^{un}/K)=\mathsf{Gal}(K_\pi/K) imes \mathsf{Gal}(K^{un}/K)=\mathcal{O}_K^* imes \hat{\mathbb{Z}}$

Outline of the Proof

We know that $\phi_K(\pi)|_{K^{un}}$ is the Frobenius element.

The proof of local class field theory consists of several steps:

- (a) Construct the fields K^{un}, K_{π} discussed above and the restriction of the local Artin map $\mathcal{O}_K^* \overset{\sim}{\to} \operatorname{Gal}(K_{\pi}/K)$.
- (b) Extend the map to $\phi_{\pi} \colon K^* \to \operatorname{Gal}(K_{\pi}K^{un}/K)$.
- (c) Show that ϕ_{π} is independent of the choice of π .
- (d) Show that $K_{\pi}K^{un} = K^{ab}$.
- (e) Show that ϕ_{π} satisfies the condition (b) of Local Reciprocity Law.

Contents

- 1 Local Class Field Theory
- 2 Lubin-Tate Formal Group Laws
- 3 Ando's Theorem on Norm-Coherent Coordinates
 - Morava E-Theory
 - Power Operations
 - Ando's Theorem

The Case of \mathbb{Q}_p

Suppose $K = \mathbb{Q}_p$ and pick the uniformizer $\pi = p$.

Local Kronecker-Weber Theorem:

$$\mathbb{Q}_p^{ab} = \bigcup_{n \in \mathbb{Z}_+} \mathbb{Q}_p(\mu_n) = \left(\bigcup_{(n,p)=1} \mathbb{Q}_p(\mu_n)\right) \cdot \left(\bigcup_{i=1}^{\infty} \mathbb{Q}_p(\mu_{p^i})\right)$$

The Case of \mathbb{Q}_p

Suppose $K = \mathbb{Q}_p$ and pick the uniformizer $\pi = p$.

Local Kronecker-Weber Theorem:

$$\mathbb{Q}_p^{ab} = \bigcup_{n \in \mathbb{Z}_+} \mathbb{Q}_p(\mu_n) = \left(\bigcup_{(n,p)=1} \mathbb{Q}_p(\mu_n)\right) \cdot \left(\bigcup_{i=1}^{\infty} \mathbb{Q}_p(\mu_{p^i})\right)$$

Let

$$\mathbb{Q}_p^{un} = \bigcup_{(n,p)=1} \mathbb{Q}_p(\mu_n) \qquad (\mathbb{Q}_p)_{\pi} = \bigcup_{i=1}^{\infty} \mathbb{Q}_p(\mu_{p^i})$$

 \mathbb{Q}_p^{un} is the maximal unramified extension of \mathbb{Q}_p .

 $(\mathbb{Q}_p)_{\pi}/\mathbb{Q}_p$ is totally ramified.

General Case

 K^{un} can be obtained from K by adjoining n-th roots of unity $(p \nmid n)$.

General Case

 K^{un} can be obtained from K by adjoining n-th roots of unity $(p \nmid n)$.

For
$$(\mathbb{Q}_p)_{\pi} = \bigcup_{i=1}^{\infty} \mathbb{Q}_p(\mu_{p^i} - 1)$$
,

 $\mu_{p^i}-1$ can be viewed as a root of $(1+T)^{p^i}-1$.

Let F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1 be the multiplicative formal group law.

$$(1+T)^{p^i}-1=[p^i]_F(T)$$
 is the p^i -series of F .

Then $(\mathbb{Q}_p)_{\pi}$ is obtained by adjoining p^i -th "division values" to \mathbb{Q}_p .

General Case

 K^{un} can be obtained from K by adjoining n-th roots of unity $(p \nmid n)$.

For
$$(\mathbb{Q}_p)_{\pi} = \bigcup_{i=1}^{\infty} \mathbb{Q}_p(\mu_{p^i} - 1)$$
,

 $\mu_{p^i}-1$ can be viewed as a root of $(1+T)^{p^i}-1$.

Let F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1 be the multiplicative formal group law.

$$(1+T)^{p^i}-1=[p^i]_F(T)$$
 is the p^i -series of F .

Then $(\mathbb{Q}_p)_{\pi}$ is obtained by adjoining p^i -th "division values" to \mathbb{Q}_p .

Lubin and Tate generalized this idea to arbitrary K.

In particular, Lubin-Tate formal group laws generalize F(X, Y).

Formal Group Laws

Definition (Commutative One-Parameter Formal Group Law)

Let R be a commutative ring. A (commutative one-parameter) formal group law is a power series $F \in R[\![X,Y]\!]$ satisfying that

- (a) $F(X, Y) \equiv X + Y \pmod{(X, Y)^2}$.
- (b) (Associativity) F(X, F(Y, Z)) = F(F(X, Y), Z).
- (c) (Commutativity) F(X, Y) = F(Y, X).

Definition

Let \mathcal{F}_{π} be the set of $f(T) \in \mathcal{O}_{K}[\![T]\!]$ such that

- (a) $f \equiv \pi T \pmod{T^2}$.
- (b) $f \equiv T^q \pmod{\pi}$.

Definition

Let \mathcal{F}_{π} be the set of $f(T) \in \mathcal{O}_{K}[\![T]\!]$ such that

- (a) $f \equiv \pi T \pmod{T^2}$.
- (b) $f \equiv T^q \pmod{\pi}$.

Lemma (Lubin-Tate)

Suppose $f,g\in\mathcal{F}_{\pi}$ and $\phi_1(X_1,\cdots,X_n)\in\mathcal{O}_K[X_1,\cdots,X_n]$ is linear.

Then there exists a unique $\phi \in \mathcal{O}_K[\![X_1,\cdots,X_n]\!]$ such that

- (a) $\phi \equiv \phi_1 \pmod{(X_1, \dots, X_n)^2}$.
- (b) $f(\phi(X_1,\dots,X_n)) = \phi(g(X_1),\dots,g(X_n)).$

Corollary

For every $f \in \mathcal{F}_{\pi}$, take $\phi_1(X, Y) = X + Y$.

Then there is a unique formal group law $F_f \in \mathcal{O}_K \llbracket X, Y
rbracket$ such that

$$f(F(X,Y)) = F(f(X,Y))$$
, i.e., $f \in End(f)$

The formal group law F_f is called the **Lubin-Tate formal group law** associated to π (and f).

Corollary

For every $f \in \mathcal{F}_{\pi}$, take $\phi_1(X, Y) = X + Y$.

Then there is a unique formal group law $F_f \in \mathcal{O}_K[\![X,Y]\!]$ such that f(F(X,Y)) = F(f(X,Y)), i.e., $f \in End(f)$

The formal group law F_f is called the **Lubin-Tate formal group law** associated to π (and f).

Proposition

There is a ring isomorphism $\mathcal{O}_K \to \operatorname{End}(F)$ given by $a \mapsto [a]_f(T)$ where $[a]_f(T) \equiv aT \pmod{T^2}$. In particular, $f = [\pi]_f$.

Example

When $K=\mathbb{Q}_p$, $\pi=p$, $f(T)=(1+T)^p-1$, $F_f=\mathbb{G}_m=X+Y+XY$ is the multiplicative formal group law. When $a\in\mathbb{Z}$, $[a]_f(T)=(1+T)^a-1$.

This can be extended to \mathbb{Z}_p . For any $a \in \mathbb{Z}_p$,

$$(1+T)^a := \sum_{m \geqslant 0} \binom{a}{m} T^m \qquad \binom{a}{m} := \frac{a(a-1)\cdots(a-m+1)}{m(m-1)\cdots 1}$$

Since \mathbb{Z}_p is complete, $\binom{a}{m} \in \mathbb{Z}_p$ and $[a]_f(T) := (1+T)^a - 1 \in \operatorname{End}(\mathbb{G}_m)$.

For any
$$f \in \mathcal{F}_{\pi}$$
, let $\Lambda_f = \{ \alpha \in K^{al} : |\alpha| < 1 \}$.

Define a \mathcal{O}_K -module structure on Λ_f by

$$\alpha + \beta := \alpha +_{F_f} \beta$$
 and $a \cdot \alpha := [a]_f(\alpha)$ for $a \in \mathcal{O}_K$

Let $\Lambda_{f,n}$ be the submodule of Λ_f consisting of roots of $[\pi^n]_f$.

For any $f \in \mathcal{F}_{\pi}$, let $\Lambda_f = \{ \alpha \in K^{al} : |\alpha| < 1 \}$.

Define a \mathcal{O}_K -module structure on Λ_f by

$$\alpha + \beta := \alpha +_{F_f} \beta$$
 and $a \cdot \alpha := [a]_f(\alpha)$ for $a \in \mathcal{O}_K$

Let $\Lambda_{f,n}$ be the submodule of Λ_f consisting of roots of $[\pi^n]_f$.

Proposition

For each n, $\Lambda_{f,n} \cong \mathcal{O}_K/(\pi^n)$ as \mathcal{O}_K -modules.

Construction of K_{π}

Theorem

Let $K_{\pi,n} := K(\Lambda_{f,n})$. Then we have

- (a) $K_{\pi,n}$ is independent of the choice of f.
- (b) For each n, $K_{\pi,n}/K$ is a totally ramified extension of degree $(q-1)q^{n-1}$.
- (c) The action of \mathcal{O}_K on $\Lambda_{f,n}$ induces an isomorphism

$$(\mathcal{O}_K/\mathfrak{m}^n)^* o \mathit{Gal}(K_{\pi,n}/K)$$

Let $K_{\pi} := \bigcup_{n \in \mathbb{Z}_{+}} K_{\pi,n}$.

Contents

- 1 Local Class Field Theory
- 2 Lubin-Tate Formal Group Laws
- 3 Ando's Theorem on Norm-Coherent Coordinates
 - Morava E-Theory
 - Power Operations
 - Ando's Theorem

Definition (Deformation of a Formal Group Law and *-Isomorphisms)

Let G be a formal group law over k and A is a complete local ring with the maximal ideal \mathfrak{m} and residue field containing k. Suppose $\pi: A \to A/\mathfrak{m}$ is the natural projection and $i: k \to A/\mathfrak{m}$ is the inclusion. A **deformation** of G to A is a formal group law F over A, such that $\pi_*(F) = i_*(G)$.

Definition (Deformation of a Formal Group Law and *-Isomorphisms)

Let G be a formal group law over k and A is a complete local ring with the maximal ideal $\mathfrak m$ and residue field containing k. Suppose $\pi\colon A\to A/\mathfrak m$ is the natural projection and $i\colon k\to A/\mathfrak m$ is the inclusion. A **deformation** of G to A is a formal group law F over A, such that $\pi_*(F)=i_*(G)$. Let $F,\tilde F$ be two deformations of G over A. Then the two deformations are said to be \star -isomorphic if there is an isomorphism $\sigma\colon F\to \tilde F$ such that $\pi_*(\sigma)=T$. Then define

 $\mathsf{Def}(A,G) := \{F \text{ is a deformation of } G \text{ over } A\} / \star \text{-isomorphic}$

Theorem (Lubin-Tate)

For any formal group law G of height n over k, \exists a universal formal group law F_{univ} over $\mathscr{R} := W(k)[\![v_1, \cdots, v_{n-1}]\!]$ such that for any complete local ring A with residue field containing k, there is a bijection

$$\operatorname{Hom}_{/k}(\mathscr{R},A) o \operatorname{Def}(A,F)$$
 $\phi \mapsto \phi_*(F_{\operatorname{univ}})$

Furthermore, $(v_0 = p, v_1, v_2, \cdots)$ is regular.

Let $\Phi(T)$ be the Honda formal group law over $k=\mathbb{F}_p$ of height n, i.e., $[p]_{\Phi}(T)=T^q$, where $[p]_{\Phi}(T)$ is the p-series of Φ .

Let $\Phi(T)$ be the Honda formal group law over $k=\mathbb{F}_p$ of height n, i.e., $[p]_{\Phi}(T)=T^q$, where $[p]_{\Phi}(T)$ is the p-series of Φ .

By Landweber exact functor theorem,

Definition (Morava E-Theory)

The generalized cohomology theory E_n with $(E_n)_* = \mathscr{R}[\beta^{\pm 1}]$, where $\deg(\beta) = -2$, classifying deformations of $\Phi(T)$ is called **Morava E-theory** E_n .

Power Operations

Fact: Both Morava E-theories and MU carry power operations, i.e., a multiplicative map $P_j^E \colon E^{2*}(X) \to E^{2*}(D_jX)$, where $D_jX := E\Sigma_j \times_{\Sigma_j} X^j$.

Power Operations

Fact: Both Morava E-theories and MU carry power operations, i.e., a multiplicative map $P_j^E \colon E^{2*}(X) \to E^{2*}(D_jX)$, where $D_jX := E\Sigma_j \times_{\Sigma_j} X^j$. A complex orientation on E_n is same to a map $t \colon \mathsf{MU} \to E_n$ between ring spectra.

Power Operations

Fact: Both Morava E-theories and MU carry power operations, i.e., a multiplicative map $P_j^E \colon E^{2*}(X) \to E^{2*}(D_jX)$, where $D_jX := E\Sigma_j \times_{\Sigma_j} X^j$. A complex orientation on E_n is same to a map $t \colon \mathsf{MU} \to E_n$ between ring spectra.

$$\begin{array}{ccc} \mathsf{MU}^{2*}(X) & \xrightarrow{P_j^{MU}} & \mathsf{MU}^{2j*}(D_jX) \\ \downarrow^t & & \downarrow^t \\ E_n^{2*}(X) & \xrightarrow{P_j^{E_n}} & E_n^{2j*}(D_jX) \end{array}$$

When does the diagram commute?

Ando's Theorem

Theorem (Ando)

In each \star -isomorphism class of lifting of Φ to the Lubin-Tate ring \mathcal{R} , there is a unique formal group law F satisfying

$$[p]_F(T) = \prod_{\lambda \text{ is a root of } [p]_F} (T +_F \lambda)$$

Moreover, the power operations on MU, E_n are compatible under t if and only if the formal group law F associated to t satisfies the condition.

Norm-Coherent Coordinates

Suppose \mathscr{F} is the formal group associated to the universal formal group law F_{univ} . A coordinate on \mathscr{F} is an isomorphism $\mathscr{F} \to \hat{\mathbb{A}}^1 = \operatorname{Spf}\mathscr{R}[\![T]\!]$. Recall a coordinate on \mathscr{F} will give a formal group law over \mathscr{R} via the multiplication map of \mathscr{F} .

Norm-Coherent Coordinates

Suppose \mathscr{F} is the formal group associated to the universal formal group law F_{univ} . A coordinate on \mathscr{F} is an isomorphism $\mathscr{F} \to \hat{\mathbb{A}}^1 = \operatorname{Spf} \mathscr{R} \llbracket T \rrbracket$.

Recall a coordinate on $\mathscr F$ will give a formal group law over $\mathscr R$ via the multiplication map of $\mathscr F$.

Suppose X is a coordinate on \mathscr{F} such that the associated formal group law F lifts Φ .

$$[p]_F \colon \mathscr{F} \to \mathscr{F} \leadsto [p]_F^* \colon \mathscr{O}_\mathscr{F} \to \mathscr{O}_\mathscr{F}$$

Then F satisfies the condition if and only if

$$X = \mathsf{Nm}_{[p]_E^*}(X)$$

Suppose K is a local field with uniformizer $\pi = p$,

i.e., K is an unramified extension of \mathbb{Q}_p .

For any $f \in \mathcal{F}_{\pi}$, F_f is a Lubin-Tate formal group law and $[p]_{F_f}(T) = f(T)$.

 $\Rightarrow F_f$ is a lifting of Φ .

Conversely, every lifting of Φ to \mathcal{O}_K has p-series in \mathcal{F}_π , so it is a

Lubin-Tate formal group law.

Suppose K is a local field with uniformizer $\pi = p$,

i.e., K is an unramified extension of \mathbb{Q}_p .

For any $f \in \mathcal{F}_{\pi}$, F_f is a Lubin-Tate formal group law and $[p]_{F_f}(T) = f(T)$.

 $\Rightarrow F_f$ is a lifting of Φ .

Conversely, every lifting of Φ to \mathcal{O}_K has p-series in \mathcal{F}_{π} , so it is a Lubin-Tate formal group law.

Liftings of Φ to $\mathcal{O}_K \Leftrightarrow \mathsf{Lubin} ext{-}\mathsf{Tate}$ formal group law.

Example

 $K=\mathbb{Q}_p$ and F(X,Y)=X+Y+XY is a Lubin-Tate formal group law.

$$[p]_F(T) = (1+T)^p - 1 \equiv T^p \pmod{p}$$

Theorem (Ando, a Special Case)

In each \star -isomorphism class of lifting of Φ to \mathcal{O}_K , there is a unique formal group law F_f satisfying

$$[p]_{F_f}(T) = \prod_{\lambda \in \Lambda_{f,1}} (T +_{F_f} \lambda)$$

Coleman Norm Operator

Theorem

There exists a unique $\mathcal{N}_{F_f} \colon \mathcal{O}_K(\!(T)\!) \to \mathcal{O}_K(\!(T)\!)$ satisfying

$$\mathcal{N}_{F_f}(g) \circ [p]_{F_f} = \prod_{\lambda \in \Lambda_{f,1}} g(T +_{F_f} \lambda)$$

for every $g \in \mathcal{O}_K((T))$. Moreover, \mathcal{N}_{F_f} is continuous and multiplicative.

In terms of Coleman norm operator, Ando's criterion becomes

$$[p]_{F_f}(T) = \mathscr{N}_{F_f}(T) \circ [p]_{F_f}(T)$$

 $\mathscr{N}_{F_f}(T) = T$

Want to show: given a Lubin-Tate formal group law F_f , there is a unique F_g in the \star -isomorphism class such that

$$\mathcal{N}_{F_g}(T) = T$$

If $u: F_f \to F_g$ is a \star -isomorphism, it can be shown that

$$\mathscr{N}_{F_g}(T) = T \Leftrightarrow \mathscr{N}_{F_f}(u(T)) = u(T)$$

We are left to show that there is a unique $u(T) \in T + T\pi[\![T]\!]$ fixed by \mathscr{N}_{F_f} .

Want to show: \exists ! $u(T) \in T + T\pi[T]$ such that $\mathscr{N}_{F_f}(u(T)) = u(T)$.

A natural way to find fixed points is to take the limit.

Want to show: $\exists ! u(T) \in T + T\pi[T]$ such that $\mathcal{N}_{F_f}(u(T)) = u(T)$.

A natural way to find fixed points is to take the limit.

In fact, the operator $\mathscr{N}_{F_f}^{\infty}$ is well-defined on $\mathscr{O}_K((T))^*$.

And there is an exact sequence of groups:

$$1 \to 1 + \pi \llbracket T \rrbracket \to \mathcal{O}_K((T))^* \overset{\mathcal{N}_{F_f}^{\infty}}{\to} \left(\mathcal{O}_K((T))^* \right)^{\mathcal{N}_{F_f}} \to 1$$

Want to show: $\exists ! u(T) \in T + T\pi[T]$ such that $\mathcal{N}_{F_f}(u(T)) = u(T)$.

A natural way to find fixed points is to take the limit.

In fact, the operator $\mathscr{N}_{F_f}^{\infty}$ is well-defined on $\mathscr{O}_K((T))^*$.

And there is an exact sequence of groups:

$$1 \to 1 + \pi[\![T]\!] \to \mathcal{O}_K((T))^* \stackrel{\mathcal{N}_{F_f}^{\infty}}{\to} \left(\mathcal{O}_K((T))^*\right)^{\mathcal{N}_{F_f}} \to 1$$

Let $u(T) = \mathscr{N}_{F_f}^{\infty}(T)$ is the desired element.

Uniqueness: if $\mathcal{N}_{F_f}(u(T)) = u(T)$, $u(T) = \mathcal{N}_{F_f}^{\infty}(u(T)) = \mathcal{N}_{F_f}^{\infty}(T)$.

Proof of Ando's Theorem

Actually the above proof only depends on the properties of \mathcal{N}_{F_f} and the fact that $[p]_{F_f}$ can be canceled from right.

We can generalize \mathcal{N}_F to arbitrary complete local domain with $p \neq 0$, residue field containing k and F a lifting of arbitrary formal group law of finite height over k.

In particular, the Lubin-Tate ring ${\mathscr R}$ satisfies such condition.

Norm-Coherence in terms of Coleman Norm Operator

The motivation of Coleman norm operator is to prove an interpolation theorem on local fields, generating a function mapping division values v_n to a norm-coherent sequence.

Norm-Coherence in terms of Coleman Norm Operator

The motivation of Coleman norm operator is to prove an interpolation theorem on local fields, generating a function mapping division values v_n to a norm-coherent sequence.

Recall {roots of $[p^n]_f$ } =: $\Lambda_{f,n} \cong \mathcal{O}_K/\pi^n$.

Let v_n be a generator of $\Lambda_{f,n}$ as a \mathcal{O}_K -module, s.t. $v_n = [p]_f(v_{n+1})$.

Then
$$\mathscr{N}_{F_f}(u) = u \Leftrightarrow N_{K_{\pi,n+1}/K_{\pi,n}}(u(v_{n+1})) = u(v_n)$$
 for all n .

In particular, $\mathscr{N}_{F_f}(T) = T \Leftrightarrow N_{K_{\pi,n+1}/K_{\pi,n}}(v_{n+1}) = v_n$ for all n.

Norm-Coherence in terms of Coleman Norm Operator

Example

Consider the case of $K = \mathbb{Q}_p$.

When
$$p>2$$
, $F(X,Y)=X+Y+XY$ is norm-coherent, $\nu_n=\mu_{p^n}-1$.

When
$$p=2$$
, $F(X,Y)=X+Y-XY$ is norm-coherent, $\nu_n=\mu_{p^n}+1$.